Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 1): 130256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368995

ABSTRACT

The current clinical treatment of diabetic wounds is still based on oxygen therapy, and the slow healing of skin wounds due to hypoxia has always been a key problem in the repair of chronic skin injuries. To overcome this problem, the oxygen-producing matrix CaO2NPS based on the temperature-sensitive dihydromyricetin-loaded hydrogel was prepared. In vitro activity showed that the dihydromyricetin (DHM) oxygen-releasing temperature-sensitive hydrogel composite (DHM-OTH) not only provided a suitable oxygen environment for cells around the wound to survive but also had good biocompatibility and various biological activities. By constructing a T2D wound model, we further investigated the repairing effect of DHM-OTH on chronic diabetic skin wounds and the mechanisms involved. DHM-OTH was able to reduce inflammatory cells and collagen deposition and promote angiogenesis and cell proliferation for diabetic wound healing. These in vitro and in vivo data suggest that DHM-OTH accelerates diabetic wound repair as a novel method to efficiently deliver oxygen to wound tissue, providing a promising strategy to improve diabetic wound healing.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Flavonols , Animals , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Poloxamer/pharmacology , Chitosan/pharmacology , Wound Healing , Oxygen , Diabetes Mellitus, Experimental/drug therapy , Bandages
2.
Biomater Res ; 27(1): 29, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061706

ABSTRACT

BACKGROUND: The activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has attracted great attention for its ability to up-regulate innate immune response and thus enhance cancer immunotherapy. However, many STING agonists limit the further advancement of immunotherapy due to weak tumor responsiveness or low activation efficiency. The responsive and effective activation of cGAS-STING signaling in tumors is a highly challenging process. METHODS: In this study, a manganese-based nanoplatform (MPCZ NPs) was constructed that could responsively and efficiently generate more manganese ions (Mn2+) and reactive oxygen species (ROS) to activate cGAS-STING signaling pathway. Briefly, manganese dioxide (MnO2) was loaded with zinc protoporphyrin IX (ZPP) molecule and coated by polydopamine (PDA) embedded with NH4HCO3 to obtain MPCZ NPs. Additionally, MPCZ NPs were evaluated in vitro and in vivo for their antitumor effects by methyl thiazolyl tetrazolium (MTT) assay and TUNEL assays, respectively. RESULTS: In this system, tumor responsiveness was achieved by exogenous (laser irradiation) and endogenous (high levels GSH) stimulation, which triggered the collapse or degradation of PDA and MnO2. Moreover, the release of Mn2+ augmented the cGAS-STING signaling pathway and enhanced the conversion of hydrogen peroxide (H2O2) to hydroxyl radical (·OH) under NIR laser irradiation. Furthermore, the release of ZPP and the elimination of GSH by MPCZ NPs inhibited HO-1 activity and prevented ROS consumption, respectively. CONCLUSIONS: This adopted open source and reduce expenditure strategy to effectively generate more ROS and Mn2+ to responsively activate cGAS-STING signaling pathway, providing a new strategy for improving immunotherapy.

3.
Int J Pharm ; 624: 122002, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35817272

ABSTRACT

Tumor immunotherapy is a promising strategy to activate the immune system and eliminate tumors. Major histocompatibility complex I (MHC-I) is usually applied to potentiate antigen presentation, but it is associated with upregulation of programmed death ligand 1 (PD-L1) expression, which is unfavorable for activation of immune responses. Moreover, poor permeability of various therapeutic antibodies results in the limited immune response rates of most patients. It is necessary to develop combined small molecule drug delivery systems for simultaneous upregulation of MHC-I expression and downregulation of PD-L1 expression, promoting effective tumor treatment. A moderate dose of doxorubicin hydrochloride (DOX) can induce upregulation of MHC-I expression, while deferasirox (DFX) can inhibit the PI3K-Akt pathway, which potentially downregulates PD-L1 expression. In the present study, we designed a pH-sensitive liposome to incorporate DOX in the hydrophilic cavity and embed DFX in the hydrophobic shell, forming a dual delivery system (DOX-DFXL). In a B16F10 melanoma-bearing mouse model, DOX and DFX were released in acidic tumor microenvironment, which further lead to enhanced antigen presentation and infiltration of T cells into tumor tissues as a result of tumor remission. This codelivery system holds great potential for clinical applications of tumor immunotherapy.


Subject(s)
Melanoma , Nanoparticles , Animals , B7-H1 Antigen , Cell Line, Tumor , Deferasirox , Down-Regulation , Doxorubicin , Immunotherapy/methods , Liposomes , Major Histocompatibility Complex , Mice , Nanoparticles/chemistry , Phosphatidylinositol 3-Kinases , Tumor Microenvironment , Up-Regulation
4.
NanoImpact ; 25: 100380, 2022 01.
Article in English | MEDLINE | ID: mdl-35559886

ABSTRACT

Air pollution is becoming severe environment factor affecting human health. More and more research has indicated that fine particulate matter (PM2.5) plays a critical role in causing pulmonary inflammation or fibrosis, which potentially is ascribed to the activation of nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. However, the underlying property-activity relationship between the physicochemical properties of PM2.5 and their activation of NLRP3 inflammasome remains unclear. Herein, various ways, such as metal chelation, organic extraction, ROS consumption, charge neutralization and particle dispersion, were applied to interfere with the effects of metal ion, polycyclic aromatic hydrocarbons (PAHs), reactive oxygen species (ROS), charge and size. It was found that aggregated size and PAHs could activate the NLRP3 inflammasome through lysosome rupture and potassium efflux, respectively. Metal ion, PAHs and surface ROS could also activate the NLRP3 inflammasome through mitochondrial ROS production. However, neutralization of PM2.5 with the negative surface charge could not relieve the activation of NLRP3 inflammasome. Furthermore, oropharyngeal aspiration of various modified PM2.5 were adopted to explore their effects on lung fibrosis, which showed the consistent results with those in cellular levels. Removal of metal ion, PAHs and ROS as well as reduction of size of PM2.5 could reduce collagen deposition in the lung tissue of mice, while the charge neutralization of PM2.5 increased this collagen deposition. This study provides great insights to clarify the property-activity relationship of PM2.5.


Subject(s)
Air Pollution , Polycyclic Aromatic Hydrocarbons , Animals , Inflammasomes , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Particulate Matter , Reactive Oxygen Species/metabolism
5.
Acta Biomater ; 140: 518-529, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34923096

ABSTRACT

Spatiotemporal targeting of tumor-associated macrophages (TAMs) and tumor cells is emerging as a promising strategy for tumor therapy. Tumor microcalcifications that specifically bind to bisphosphonates are potentially used to design efficient relay drug delivery nanosystems to achieve spatiotemporal drug modulation. Here, we developed manganese dioxide (MnO2)-embedded and LyP-1 peptide-labeled liposomal nanoparticles (NPs) for photodynamic immunotherapy of breast cancer; zoledronic acid (Zol) was encapsulated in the hydrophilic cavity of liposomes, and a hydrophobic photosensitizer (IR780) was embedded in the phospholipid bilayer of liposomes. These Lipo Zol/IR NPs generated O2 bubbles through MnO2 in response to H2O2 in the tumor microenvironment, leading to the degradation of the liposomal membrane, which triggered the release of Zol and provided O2 for photodynamic therapy. The released Zol attached to microcalcifications and was selectively phagocytosed by TAMs, leading to the induction of death or repolarization of TAMs from the immunosuppressive M2 phenotype to the immunostimulatory M1 phenotype. The remaining liposomal fragments embedded with IR780 then preferentially targeted tumor cells through LyP-1 peptide and produced abundant reactive oxygen species (ROS) under near infrared (NIR) laser irradiation, resulting in the death of tumor cells and mild immune activation. All in vitro and in vivo studies demonstrated the effective photodynamic and immunoregulatory performance of Lipo Zol/IR NPs. STATEMENT OF SIGNIFICANCE: Spatiotemporal targeting of tumor-associated macrophages (TAMs) and tumor cells remains a challenge in tumor photodynamic immunotherapy for promoting synergy and reducing side effects. Here, we developed tumor microcalcification-mediated relay drug delivery nanoliposomes for breast cancer therapy. H2O2 in the tumor microenvironment (TME) triggers the breakage of nanoliposomes, thereby causing the separation of zoledronic acid (Zol) and the photosensitizer IR780 and allowing them to perform their respective functions. Microcalcifications enable Zol to target TAMs, resulting in immunomodulation. LyP-1 guides IR780 to target tumor cells for PDT with adequate O2 supply. These nanoliposomes enable precise spatiotemporal targeting of different types of cells in the TME and promote the synergy between immunotherapy and PDT while ensuring the effectiveness of both methods.


Subject(s)
Breast Neoplasms , Calcinosis , Nanoparticles , Photochemotherapy , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Hydrogen Peroxide/pharmacology , Immunotherapy , Manganese Compounds/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Photochemotherapy/methods , Tumor Microenvironment
6.
Nanoscale ; 13(35): 14825-14836, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533171

ABSTRACT

Surgery is the primary treatment option for most melanoma; however, high tumor recurrence rate after surgical resection becomes the main cause of death in cancer patients. The development of efficient drug delivery nanosystems to inhibit postoperative tumor recurrence becomes very necessary. In the present study, IR780 molecules and TRP-2 peptide were encapsulated in the hydrophobic shell and hydrophilic interior of TAT peptide functionalized liposomes to form TLipIT NPs, which were further internalized into neutrophils (NEs) to achieve TLipIT/NEs. After being intravenously injected into postoperative B16F10-bearing mice, TLipIT/NEs could actively migrate toward the inflamed residual tumor and release TLipIT through neutrophil extracellular traps (NETs). Under NIR laser irradiation, the TLipIT exhibited both photothermal and photodynamic effects to induce immunogenic cell death for maturation of DCs, and simultaneously, to release TRP-2 peptide as a melanoma associated antigen to further strengthen the maturation of DCs, both of which prompts the activation of T cells and induces potent immune responses. TLipIT/NEs hold great potential for the inhibition of postoperative tumor recurrence.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Cell Line, Tumor , Humans , Indoles , Melanoma/drug therapy , Mice , Neutrophils , Phototherapy , Skin Neoplasms/drug therapy
7.
Adv Healthc Mater ; 10(14): e2100412, 2021 07.
Article in English | MEDLINE | ID: mdl-34075731

ABSTRACT

Chemodynamic therapy (CDT) efficacy has been limited by the poor penetration ability of large nanoparticles (NPs) and the antioxidant activity of tumors, especially high heme oxygenase (HO-1) and glutathione (GSH) levels. Herein, PEGylated CuMoOx -coated and zinc protoporphyrin IX (ZP)-loaded Cu (CCMZ) NPs are designed to afford rapid degradation ability and augmented CDT efficacy through inhibiting HO-1 activity and depleting GSH. The deep penetration of tumor can be achieved under the high levels of GSH, which triggers the degradation of CuMoOx shell. Meanwhile, GSH itself is depleted, which converts the reductive environment into constant oxidative environment, thus leading to the degradation of Cu core. Furthermore, the release of ZP from CCMZ NPs can inhibit HO-1 activity and provide a favorable microenvironment for CDT, and the release of Cu and Mo ions can convert hydrogen peroxide into hydroxyl radical to eliminate tumor cells more efficiently. In addition, CCMZ NPs also play an immune vaccine-like effect to recruit different immune cells for antitumor immunotherapy. In vitro and in vivo studies prove the augmented CDT property of CCMZ NPs, supplying a new strategy for improving CDT efficacy.


Subject(s)
Nanoparticles , Neoplasms , Antioxidants/pharmacology , Cell Line, Tumor , Copper , Glutathione , Humans , Hydrogen Peroxide , Neoplasms/drug therapy , Tumor Microenvironment
8.
Environ Pollut ; 284: 117438, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34058500

ABSTRACT

Soluble lanthanum (La)(Ⅲ) species that have been extensively used as fertilizers in agriculture can potentially get into the human body through foods and environment. Most soluble La(Ⅲ) species can rapidly transform into insoluble La(Ⅲ) species under physiological conditions, however, their potential biological behavior and chronic toxicity are rarely investigated. In the present study, insoluble La(Ⅲ) species formed under physiological condition were identified as nanoscale or microscale particles, and their major components were found to experience biotransformation process upon contact with cells. Insoluble La(Ⅲ) species could adhere to extracellular membrane or be internalized into cells, capable of activating a nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. The underlying mechanism could be ascribed to K+ efflux and lysosomal rupture because these insoluble La(Ⅲ) species locating at extracellular membrane could reduce the unsaturated fatty acids of cell membrane, leading to potassium (K+) efflux, and those internalized into cells could consume the phospholipids of lysosomal membrane, leading to lysosomal rupture. Mice daily drinking soluble La(Ⅲ) species to mimic drinking tea process for 90 days were found to present NLRP3 inflammasome activation in liver and kidney, as a result of chronic fibrosis, which is potentially correlated to insoluble La(Ⅲ) species formation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Biotransformation , Fibrosis , Inflammasomes/metabolism , Lanthanum/toxicity , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
ACS Biomater Sci Eng ; 7(6): 2745-2754, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33951394

ABSTRACT

Copper-based nanomaterials are widely used in near-infrared (NIR) light-mediated deep tumor treatment because of their abundant photothermal and photodynamic properties. However, copper phosphide (Cu3P) nanoparticles (NPs) are rarely investigated. Herein, Cu3P NPs were prepared to strengthen their local surface plasmon resonance absorption in the NIR region, exhibiting promising photothermal and photodynamic properties. After surface modification by polyethylene glycol, the formed pCu3P NPs showed negligible influence on the viability of 4T1 cells, presenting remarkable biocompatibility. However, with 808 nm irradiation, pCu3P NPs could induce HSP70 and HO-1 protein expression and enhance intracellular reactive oxygen species levels, leading to dramatic cell death. In 4T1 tumor-bearing mice, an intravenous injection of biocompatible pCu3P NP could lead to remarkable aggregation in the tumor region and significantly inhibit tumor growth under 808 nm laser irradiation, presenting great potential for tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Copper , Mice , Reactive Oxygen Species
10.
ACS Appl Mater Interfaces ; 13(17): 19825-19835, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33881837

ABSTRACT

Tumor-associated macrophages (TAMs) of M2 phenotype have mediated the immunosuppression in a tumor microenvironment, facilitating the escape of tumor cells from immunosurveillance. Reprograming the immunosuppressive M2 TAMs to immunostimulatory M1 phenotype can activate the antitumor immune responses for cancer immunotherapy. Herein, hollow iron oxide (Fe3O4) nanoparticles (NPs) were employed to reprogram M2 TAMs toward M1 TAMs, aiming to release proinflammatory cytokines and recruit T cells to kill tumor cells. After loaded with l-arginine (l-Arg) and sealed with poly(acrylic acid) (PAA), hollow Fe3O4 NPs were fabricated into LPFe3O4 NPs, which could release l-Arg based on pH-responsive PAA and produce nitric oxide (NO) with the help of nitric oxide synthase (iNOS) overexpressed by M1 TAMs, as a result of additional tumor elimination for gas therapy. In vitro and in vivo studies demonstrate that LPFe3O4 NPs could effectively reprogram M2 to M1 macrophages, activating T cells, releasing TNF-α, and producing high levels of NO, leading to synergistic tumor therapy.


Subject(s)
Arginine/administration & dosage , Gases/chemistry , Immunotherapy/methods , Macrophages/immunology , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Neoplasms/drug therapy , Tumor Microenvironment , Acrylic Resins/chemistry , Animals , Humans , Macrophages/enzymology , Macrophages/metabolism , Mice , Neoplasms/immunology , Neoplasms/pathology , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
11.
Adv Healthc Mater ; 10(6): e2001666, 2021 03.
Article in English | MEDLINE | ID: mdl-33448152

ABSTRACT

Photodynamic therapy (PDT) efficacy has been dramatically limited by the insufficient oxygen (O2 ) level in hypoxic tumors. Although various PDT nanosystems have been designed to deliver or produce O2 in support of reactive oxygen species (ROS) formation, the feature of asynchronous O2 generation and ROS formation still results in the low PDT efficacy. Herein, thylakoid membranes (TM) of chloroplasts is decorated on upconversion nanoparticles (UCNPs) to form UCTM NPs, aiming at realizing spatiotemporally synchronous O2 self-supply and ROS production. Upon 980 nm laser irradiation, UC NPs can emit the red light to activate both photosystem-I and photosystem-II of TM, the Z-scheme electronic structure of which facilitates water to produce O2 and further to singlet oxygen (1 O2 ). UCTM NPs showed excellent biocompatibility, and can effectively remove the hypoxic tumor of mice upon 980 nm laser irradiation. This study develops a new PDT strategy for hypoxic tumor therapy based on photosynthesis.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Neoplasms/drug therapy , Oxygen , Photosensitizing Agents/therapeutic use , Singlet Oxygen , Thylakoids
12.
Nanoscale ; 12(45): 23159-23165, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33200159

ABSTRACT

Photothermal therapy (PTT) and chemodynamic therapy (CDT) are promising therapeutic modalities with high specificity, however, a single therapeutic modality cannot maximize therapeutic efficacy. In the present study, glucose oxidase (GOx) was decorated on N-doped carbon (NC) nanoparticles (NPs) as a biomimetic nanoenzyme (NC@GOx NPs), which could promote starvation therapy enhanced PTT and CDT against tumors. GOx could decompose to cut off the supply of energy and nutrients, inducing starvation therapy, which further lowered adenosine triphosphate (ATP) levels, inducing downregulated heat shock proteins and creating a more suitable microenvironment for improving PTT efficacy. Meanwhile, the generated endogenous hydrogen peroxide (H2O2) could be converted into hydroxyl radicals to attack cancer cells. In fact, in vitro and in vivo experiments demonstrated that NC@GOx NPs could effectively kill cancer cells and eliminate tumors. This design provides a strategy for synergistic cancer therapy by using biomimetic nanoenzymes.


Subject(s)
Nanoparticles , Neoplasms , Biomimetics , Glucose Oxidase , Humans , Hydrogen Peroxide , Neoplasms/drug therapy , Tumor Microenvironment
13.
J Mater Chem B ; 8(38): 8803-8808, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32857100

ABSTRACT

Bismuth (Bi) nanoparticles (NPs) are emerging as promising photothermal agents for computed tomography imaging-guided photothermal therapy. However, it is challenging to improve their photothermal conversion efficacy and prevent their oxidation. Herein, Bi@bismuth selenide (Bi2Se3) core@shell NPs were designed and fabricated for improving the photothermal performance due to the staggered energy levels between Bi and Bi2Se3. With near-infrared light irradiation, both the materials could be excited to generate hot carriers due to their extremely narrow bandgaps. The hot electrons would transfer to the conduction band of Bi2Se3 and the hot holes to the valence band of Bi, leading to the effective separation of hot carriers. Then, these hot electrons and holes would recombine nonradiatively at the interface of Bi and Bi2Se3 and produce more phonons, resulting in an enhanced photothermal conversion efficacy. Moreover, the presence of Bi2Se3 on the surface of Bi NPs could prevent Bi from surface oxidation due to the higher stability of Bi2Se3. In fact, Bi@Bi2Se3 NPs showed excellent biocompatibility and photothermal therapeutic efficacy against cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Bismuth/chemistry , Hyperthermia, Induced/methods , Metal Nanoparticles/chemistry , Organoselenium Compounds/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Infrared Rays , Metal Nanoparticles/radiation effects , Mice , Photothermal Therapy/methods , Selenium Compounds
14.
Small ; 16(21): e1907643, 2020 05.
Article in English | MEDLINE | ID: mdl-32187839

ABSTRACT

The safety of metal oxide (MOx) nanoparticles (NPs) has been highly concerned because of their wide application and potential toxicological injury. The safe-by-design strategy is usually developed to make safer MOx NPs based on regulation of their physicochemical properties. In the present study, manganese oxide (Mn3 O4 ) NPs, as a representative of insoluble toxic MOx NPs, are doped with a series of transition metal to regulate their conduction band energy (Ec ) out of biological redox potential range (BRPR) or Fermi energy (Ef ) far away from valence band energy (Ev ), aiming at completely eliminating the toxicity or significantly reducing the toxicity. It is found that all these M-doping cannot move Ec of Mn3 O4 NPs out of the BRPR but zinc (Zn)-, copper (Cu)-, and chromium (Cr)-doping do move Ef far away from Ev , where Zn-doping results in the largest |Ef - Ev | value. Various abiotic, in vitro and in vivo assessments reveal that Zn-, Cu-, and Cr-doped Mn3 O4 NPs can generate lower amount of •OH and trigger weaker injury than Mn3 O4 NPs, where Zn-doped Mn3 O4 NPs show the lowest toxicity. Regulating Ef far away from Ev becomes a feasible safe-by-design approach to achieve safe MOx NPs.

15.
Adv Mater ; 32(11): e1908109, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32022983

ABSTRACT

Photodynamic therapy (PDT) efficacy has been severely limited by oxygen (O2 ) deficiency in tumors and the electron-hole separation inefficiency in photosensitizers, especially the long-range diffusion of O2 toward photosensitizers during the PDT process. Herein, novel bismuth sulfide (Bi2 S3 )@bismuth (Bi) Z-scheme heterostructured nanorods (NRs) are designed to realize the spatiotemporally synchronous O2 self-supply and production of reactive oxygen species for hypoxic tumor therapy. Both narrow-bandgap Bi2 S3 and Bi components can be excited by a near-infrared laser to generate abundant electrons and holes. The Z-scheme heterostructure endows Bi2 S3 @Bi NRs with an efficient electron-hole separation ability and potent redox potentials, where the hole on the valence band of Bi2 S3 can react with water to supply O2 for the electron on the conduction band of Bi to produce reactive oxygen species. The Bi2 S3 @Bi NRs overcome the major obstacles of conventional photosensitizers during the PDT process and exhibit a promising phototherapeutic effect, supplying a new strategy for hypoxic tumor elimination.


Subject(s)
Bismuth/therapeutic use , Neoplasms/drug therapy , Oxygen/metabolism , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Sulfides/therapeutic use , Animals , Bismuth/chemistry , Cell Line, Tumor , Mice , Nanotubes/chemistry , Neoplasms/metabolism , Photochemotherapy , Photosensitizing Agents/chemistry , Sulfides/chemistry , Tumor Hypoxia/drug effects
16.
Nano Lett ; 19(10): 6800-6811, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31466437

ABSTRACT

Nitric oxide (NO) molecular messenger can reverse the multidrug resistance (MDR) effect of cancer cells through reducing P-glycoprotein (P-gp) expression, beneficial for creating a favorable microenvironment for the treatment of doxorubicin (Dox)-resistant cancer cells. Development of sophisticated nanosystems to programmably release NO and Dox becomes an efficient strategy to overcome the MDR obstacles and achieve promising therapeutic effects in Dox-resistant cancer. Herein, a NO stimulated nanosystem was designed to engineer a significant time gap between NO and Dox release, promoting MDR cancer therapy. A o-phenylenediamine-containing lipid that can hydrolyze in response to NO was embedded in the phospholipid bilayer structure of liposome to form NO-responsive liposome, which could further encapsulate l-arginine (l-Arg)/Dox-loaded gold@copper sulfide yolk-shell nanoparticls (ADAu@CuS YSNPs) to form ADLAu@CuS YSNPs. Under 808 nm laser irradiation, the unique resonant energy transfer (RET) process and reactive oxygen species (ROS) generation in the confined space of ADLAu@CuS YSNPs could effectively convert l-Arg into NO, regionally destabilizing the phospholipid bilayer structure, as a result of NO release. However, at this early stage Dox could not be released from YSNPs due to the molecular scaffold limit. As the NO release progressed, the NO-responsive liposome layer was deteriorated more severely, allowing Dox to escape. This NO and Dox sequential release of ADLAu@CuS YSNPs could significantly inhibit P-gp expression and enhance Dox accumulation in Dox-resistant MCF-7/ADR cells, leading to promising in vitro and in vivo therapeutic effects and presenting their great potential for MDR cancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Delayed-Action Preparations/metabolism , Doxorubicin/administration & dosage , Nitric Oxide/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Liberation , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Female , Humans , Liposomes/metabolism , MCF-7 Cells , Nanoparticles/metabolism
17.
ACS Appl Mater Interfaces ; 11(37): 33725-33733, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31449386

ABSTRACT

Wound healing is a dynamic, interactive, and complex process, including multiple stages. Although various nanomaterials are applied to accelerate the wound healing process through exhibiting antibacterial activity or promoting cell proliferation, only a single stage is promoted during the process, lowering healing efficacy. It is necessary to develop programmable nanosystems for promoting multiple wound healing stages in sequence. Herein, arginine-loaded and detachable ceria-graphene nanocomposites (ACG NCs) were designed to achieve this purpose. Ceria NPs and graphene were linked by base-cleavable N-hydroxysuccinimide ester. At inflammation stage, ACG NCs could effectively generate reactive oxygen species (ROS) and kill bacteria under white light irradiation due to their efficient electron-hole separation between ceria NPs and graphene. At proliferation stage, ceria NPs could be detached from ACG NCs and taken up by cells to scarify intracellular ROS and promote cell proliferation, while the separated graphene could act as a scaffold to promote fibroblast migration to wound site. A series of in vitro and in vivo assessments demonstrated that ACG NCs could effectively accelerate wound healing process.


Subject(s)
Cell Proliferation/drug effects , Cerium , Fibroblasts/metabolism , Nanocomposites , Nanoparticles , Wound Healing/drug effects , 3T3 Cells , Animals , Arginine/chemistry , Arginine/pharmacology , Cerium/chemistry , Cerium/pharmacology , Fibroblasts/pathology , Graphite/chemistry , Graphite/pharmacology , Mice , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
18.
Biomaterials ; 217: 119327, 2019 10.
Article in English | MEDLINE | ID: mdl-31299626

ABSTRACT

Photochemotherapy is currently an effective anticancer therapy. Recently, it has been reported that cancer cells pretreated with epidermal growth factor receptor (EGFR) inhibitor erlotinib (Erl) can significantly synergize its apoptosis against the DNA damaging agent doxorubicin (Dox). As a result, we designed two gold nanocages (Au NCs) microcontainers covered with different smart polymer shell-PAA (pH responsive) and p (NIPAM-co-AM) (temperature responsive) containing Erl and Dox respectively. The acidic tumor microenvironment and NIR light irradiation can selectively activate the release of Erl and Dox. Time staggered release of Erl and Dox and photothermal therapy enhance the apoptotic signaling pathways, resulting in improved tumor cell killing in both MCF-7 (low EGFR expression) and A431 (very high EGFR expression) tumor cells, but more efficient in the latter. The photochemotherapy strategy controls the order and duration of drug exposure precisely in spatial and temporal, and significantly improves the therapeutic efficacy against high EGFR expressed tumors.


Subject(s)
Doxorubicin/pharmacology , Drug Delivery Systems , Erlotinib Hydrochloride/pharmacology , Gold/chemistry , Hyperthermia, Induced , Metal Nanoparticles/chemistry , Phototherapy , Polymers/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Death/drug effects , Drug Liberation , Endocytosis/drug effects , ErbB Receptors/metabolism , Female , Humans , Hydrogen-Ion Concentration , Infrared Rays , MCF-7 Cells , Metal Nanoparticles/ultrastructure , Mice, Inbred BALB C , Mice, Nude , Temperature , Time Factors
19.
Adv Healthc Mater ; 8(16): e1900256, 2019 08.
Article in English | MEDLINE | ID: mdl-31290270

ABSTRACT

Wound healing is a complex and sequential biological process that involves multiple stages. Although various nanomaterials are applied to accelerate the wound healing process, only a single stage is promoted during the process, lacking hierarchical stimulation. Herein, hollow CeO2 nanoparticles (NPs) with rough surface and l-arginine inside (Ah CeO2 NPs) are developed as a compact and programmable nanosystem for sequentially promoting the hemostasis, inflammation, and proliferation stages. The rough surface of Ah CeO2 NPs works as a nanobridge to rapidly closure the wounds, promoting the hemostasis stage. The hollow structure of Ah CeO2 NPs enables the multireflection of light inside particles, significantly enhancing the light harvest efficiency and electron-hole pair abundance. Simultaneously, the porous shell of Ah CeO2 NPs facilitates the electron-hole separation and reactive oxygen species production, preventing wound infection and promotion wound healing during the inflammation stage. The enzyme mimicking property of Ah CeO2 NPs can alleviate the oxidative injury in the wound, and the released l-arginine can be converted into nitric oxide (NO) under the catalysis of inducible NO synthase, both of which promote the proliferation stage. A series of in vitro and in vitro biological assessments corroborate the effectiveness of Ah CeO2 NPs in the wound healing process.


Subject(s)
Cerium/chemistry , Nanoparticles/chemistry , Nitric Oxide/chemistry , Cell Proliferation/physiology , Light , Oxidative Stress , Wound Healing/physiology
20.
Adv Sci (Weinh) ; 6(11): 1900158, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31179221

ABSTRACT

The development of sophisticated theranostic systems for simultaneous near infrared (NIR) fluorescence imaging and phototherapy is of particular interest. Herein, anisotropic plasmonic metal heterostructures, Pt end-deposited Au nanorods (PEA NRs), are developed to efficiently produce hot electrons under 808 nm laser irradiation, exhibiting the strong electric density. These hot electrons can release the heat through electron-phonon relaxation and form reactive oxygen species through chemical transformation, as a result of potent photothermal and photodynamic performance. Simultaneously, the confined electromagnetic field of PEA NRs can transfer energy to adjacent polyethylene glycol (PEG)-linked NIR fluorophores (CF) based on their energy overlap mechanism, leading to remarkable NIR fluorescence amplification in CF-PEA NRs. Various PEG linkers (1, 3.4, 5.0, and 10 kD) are employed to regulate the distance between CF and PEA NRs of CF-PEA NRs, and the maximum fluorescence intensity is achieved in CF5k-PEA NRs. After further attachment with i-motif DNA/Nrf2 siRNA chimera to simultaneously suppress both cellular antioxidant defense and hyperthermia resistance effects, the final biocompatible CF5k-bPEA@siRNA NRs present promising NIR fluorescence imaging ability and 808 nm laser-activated photothermal and photodynamic therapeutic effect in MCF7 cells and tumor-bearing mice, holding great potential for cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...